Die Kristallstruktur von Ru₂Si₃

Von

P. Israiloff und H. Völlenkle

Aus dem Institut für Mineralogie, Kristallographie und Strukturchemie der Technischen Hochschule Wien, Österreich

Mit 1 Abbildung

(Eingegangen am 7. August 1974)

The Crystal Structure of Ru₂Si₃

The crystal structure of Ru₂Si₃ has been refined by leastsquares using three-dimensional X-ray data from a twinned crystal (1355 reflections, R = 5.8%). Ru₂Si₃ is isostructural with Ru₂Ge₃ and like this compound a member of the Mn₁₁Si₁₉ structure family. The lattice parameters of the orthorhombic unit cell (Pnca—D¹⁴_{2h}) are: a = 5.530 (1), b = 11.060 (2) and c = 8.952 (2) Å.

Über die Existenz eines siliciumreichen Rutheniumsilicids berichtete erstmals $Wallbaum^1$ und schrieb der Verbindung die Zusammensetzung RuSi₂ zu. Später wurde von *Buddery* und *Welch*² die Zusammensetzung auf Ru₂Si₃ korrigiert und eine tetragonale Elementarzelle mit a = 5,52und c = 4,46 Å angegeben. *Finnie*³ bestätigte in der Folge die neue Zusammensetzung, konnte jedoch das Pulverdiagramm mit der angegebenen Zelle nicht vollständig indizieren. Einkristalluntersuchungen von *Schwomma* et al.⁴ führten schließlich auf eine Verdoppelung beider Gitterparameter der tetragonalen Elementarzelle. In Anschluß an die Strukturaufklärung des isotypen Rutheniumgermanids, Ru₂Ge₃⁵, wird nun auch die Struktur von Ru₂Si₃ vollständig bestimmt.

Experimenteller Teil

Pulvermischungen der Elemente (Ru 99,95%, Si 99,9%) im atomaren Verhältnis Ru: Si = 2:3 wurden in Quarzröhrchen unter Argonatmosphäre induktiv mit Hilfe eines Hochfrequenzgenerators erschmolzen. Anschließend wurden die Schmelzproben 60 Stdn. bei 1000 °C in evakuierten Quarzampullen homogenisiert.

Die so behandelten Proben enthielten Einkristalle von Ru_2Si_3 bis

etwa 0,2 mm Größe. Weissenberg-Aufnahmen mit CuK α - und MoK α -Strahlung führten wieder auf die bereits bekannte tetragonale Elementarzelle⁴ mit den für die vorliegende Zwillingsbildung charakteristischen Auslöschungsbedingungen⁵: (*hkl*) nur mit *h* oder k = 2n, (*hk*0) nur mit *h* oder k = 4n und (0*kl*) nur mit k + l = 2n vorhanden. Die tatsächlich vorliegende orthorhombische Elementarzelle enthält 8 Formeleinheiten Ru₂Si₃ und besitzt die folgenden, aus *Guinier*-Aufnahmen (CuK α_1 -Strahlung) berechneten, Gitterparameter:

$$a = 5,530(1), b = 11,060(2)$$
 und $c = 8,952(2)$ Å.

Die Intensitäten wurden mit einem Einkristalldiffraktometer (Picker FACS-I) an einem Kristall mit den Abmessungen $0.08 \times 0.10 \times 0.21$ mm gemessen. Nach einer Reihe von Probemessungen, bei denen sichergestellt wurde, daß die durch die Zwillingssymmetrie verursachte Äquivalenz I (hkl) = I (khl) auch bei diesem Kristall innerhalb der Meßfehler zutrifft, wurde die Messung für die asymmetrische Einheit der tetragonalen Zelle durchgeführt (*Laue*-Symmetrie 4/mmm). Insgesamt wurden 1865 unabhängige Reflexe mit MoK α -Strahlung (Nb-Filter) bis 2 $\theta = 90^{\circ}$ erfaßt ($\theta/2 \theta$ -Scan mit 1°/min). Die Meßwerte wurden mittels der in Abständen von 50 Reflexen gemessenen Standardreflexe nachskaliert sowie mit *Lorentz*-Polarisations-Faktoren und Absorptionsfaktoren für kugelförmige Kristalle ($\mu R = 0.87$) korrigiert.

Verfeinerung der Kristallstruktur

Zur Verfeinerung der Struktur mußte zuerst der gemessene tetragonale Datensatz in einen vollständigen Datensatz der orthorhombischen Zelle transformiert werden. Der tetragonale Reflexsatz wurde zunächst durch Spiegelung an der diagonalen Symmetrieebene auf die Größe einer rhombischen asymmetrischen Einheit gebracht. Dieser Datensatz enthält nun sowohl einfache Reflexe aus beiden Zwillingsbereichen als auch koinzidierende Reflexe mit Anteilen aus beiden Bereichen. Die einfachen Reflexe aus einem Zwillingsbereich führen bei der Transformation in die rhombische Zelle mit der Matrix (1/200/010/001) auf nicht-ganzzahlige Indices und können so leicht entfernt werden. Für die überlagerten Reflexe wird der Anteil des unerwünschten Zwillingsbereiches zunächst einfach durch Halbierung der Intensitäten eliminiert; die genaue Aufteilung erfolgt dann später im Verhältnis der berechneten F_c^2 -Werte. Diese Aufteilung wird dann innerhalb des einfachen Datensatzes des verbleibenden Zwillingsbereiches durchgeführt, der in der asymmetrischen Einheit zwangsläufig beide Reflexe enthalten muß.

Aus dieser Transformation resultierten für die Verfeinerung 1355 orthorhombisch indizierte Reflexe, von denen 753 nicht überlagern; der Rest ist paarweise überlagert (2×301) . Bei der Transformation wurden dabei auch alle Reflexe eliminiert, die nach einer vorläufigen Absolutierung nach Wilson die Bedingung $|F_0| \ge 20$ nicht erfüllten. Der relativ hohe untere Grenzwert von 20 wurde vor allem deshalb gewählt, um Fehlmessungen im Bremsstrahlbereich auch sehr starker Reflexe sicher auszuschließen.

Als Ausgangswerte für die Verfeinerung nach der Methode der kleinsten Quadrate dienten die Atomparameter von $\operatorname{Ru}_2\operatorname{Ge}_3{}^5$ in der für diese Struktur gewählten Aufstellung der Raumgruppe Pnca— D_{2h}^{14} mit dem Symmetriezentrum in $\frac{1}{4}\frac{1}{4}0$. Der Ausgleichsrechnung wurden die Atomformfaktoren der "International Tables for X-ray Crystallo-

Tabelle 1. Punktlagen, Atomparameter und isotrope Temperaturfaktoren für Ru₂Si₃; Standardabweichungen der letzten Stellen in Klammern

Atom	Punktlage	x	y	z	$B\left[{ m \AA}^2 ight]$	
Ru (1)	4 (c)	0.0	0.25	0.9253(1)	0.38 (1)	
Ru (2)	4(c)	0,0	0,25	0,4583(1)	0,38(1)	
Ru (3)	8 (d)	0,0127(1)	0,9958(1)	0,8124(1)	0,40(1)	
Si(1)	8 (d)	0,1618(5)	0,0699(3)	0,5632(3)	0,41(3)	
Si(2)	8 (d)	0,3041(5)	0,1766(3)	0,2915(3)	0,39 (3)	
Si (3)	8 (d)	0,3543 (6)	0,1193 (3)	0,8936(3)	0,69 (3)	

graphy6" und das Gewichtsschema nach Hughes7 zugrunde gelegt $(F_{lim} = 100)$. Nach jedem zweiten Verfeinerungszyklus wurde die Aufteilung der Intensitäten (bzw. F_0^2) für die 602 überlagerten Reflexe mittels der letzten F_{c^2} -Werte für die nächste Verfeinerungsstufe neu berechnet. Dieses Verfahren konvergierte im vorliegenden Fall fast ebenso gut wie eine normale Verfeinerung bis zu einem R-Wert von 5,8% für alle 1355 Reflexe. Berechnet man den R-Wert für die beiden Gruppen der überlagerten und nicht überlagerten Reflexe getrennt, so zeigt sich kein auffallender Unterschied : 5,3% für die 602 überlagerten und 6,3% für die 753 nicht überlagerten Reflexe. In Tab. 1 sind die verfeinerten Atomparameter und isotropen Temperaturkoeffizienten wiedergegeben. Tab. 2 enthält die beobachteten und berechneten Strukturamplituden. Im ersten Teil der Tabelle sind die jeweils koinzidierenden Reflexe in je zwei Kolonnen nebeneinander angeführt. Die überlagerten Reflexe weisen alle nur gerade Indizes k auf und können durch die Matrix $(0\frac{1}{2}0/200/001)$ ineinander transformiert werden. Der zweite Teil der Tabelle enthält die nicht überlagerten Reflexe mit k = 2n + 1 sowie mit ausgelöschten Reflexen oder mit sich selbst überlagerte Reflexe.

н	ĸ	L	FO	PC	ы	ĸ	L	FO	FC	н	к	L	PO	PC	н	ĸ	L	FO	FC
2	0	3	413	448	0		2	4.04	453	5	. 1	5	13		5 1	2	5	50	26
2	4	1	535	1 25	7		u n	360	107	7	10	5	26	76	2 1	4	ŝ	2	25
5	9	0	397	177	9	12	0	3 25	319		z	5	13	15	1 1	6	5	21	Z1
-	-	2	247	240	?	12		263	262	2	4	5	14	15	2 1	5	5	27	52
	â	1	227	1 15		16	0	296	252	-	12	5	15	19	5 1	6	ŝ	14	22
•	4	9	219	195	,	16	0	201	187	9	8	5	5	6	4 I	6	5	34	35
2		2	214	210		15	0	167	164	1	0	5	251	279	0	Ś	6	200	223
12	٠;	2	134	1 14	3	20	a	115	115	ź	2	6	223	244	ť.	τ.	5	2 61	256
10	4	n	153	1.50	2	20	0	1.74	175	3	0	6	285	296	÷ .	6	6	249	256
19		;	111	115	:	20	0	145	149	3		6	247	? 58	2	6	5	1 45	158
÷.	2	÷	42	40	1	6	i	46	44		2	6	205	213	i	š.	5	273	271
3	4	1	32	10	2	6	1	27	21		÷.	5			2	8	5	27	25
2	~	1	43	67	1		-	44	29		5	6	144	150	n 1	0	6	11/	173
5	2	- î	43	40	ì	10	î	50	46	Ś	4	5	201	202	ž i	ō	5	161	161
S	4	t	33	35	2	10	1	5	5	5	6	6	23	27	3 1	0	5	10	17
5	2	1	10	12	1	12	1	75	23	6	ō	6	18	19	i i	2	6	27	29
6		1	•	7	4	12	1	77	26	6	2	5	129	1 27	1 1	2	5	149	147
7	Z	1	13	13	;	14	1	24	23	- 5	6	6	154	152	3 1	ź	5	207	205
7		ì	24	25		14	î	16	17	6		6	24	22	i î	ż	6	12	12
~	12	1	27	29	5	14	1	13	14	5	10	5	122	114	5 1	2	6	127	114
2	2	1	43	25	2	15	1	13	19	÷	2	6	27	26	1 1		6	147	
	5	ĩ	2	ż	3	16	1	25	23	7	4	6	129	1 21	ż t	4	6	141	1 32
9	2	1	29	26 22	1	17	1	71	.,	;	÷.	6	141	1 15	4 1· 6 1·		6	127	115
9	10	i	23	34	ś	18	i	23	24	÷.	2	5	112	1 15	1 1	6	5	1 37	129
1		2	280	313	9	2	2	117	349	a	4	6	13	13	7 1	6	5	23	23
ź	2	2	375	417	1	4	ź	361	404	,	â	6	39	3	5 I 5 I	6	6	27	25
3	0	ż	417	444	õ	6	2	404	4 10	1	10	6	56	92	5 1	6	5	97	92
1	?	2	25	23	1	6	2	30	25	9	0	6	107	112	0 1		6	57	92
2	ě	ź	36	33	2		ź	27	25	9		6	79	91	4 1		6	55	87
4	ş	2	215	2 4 9	ĩ	8	2	264	265	10	a	6	16	16	0 2	0	6	24	24
4	4	2 7	28	28 7 7 7	S L	8	7	9 220	222	10	2	\$	13	13	1 2	u 6	7	1.00	102
5	0	2	204	199	Ó	10	ż	266	259	4	4	7	69	64	2		7	25	23
5	4	2	225	214	?	10	2	234	227	5	?	?	25	72	1 1	0	7	30	29
6	ò	2	35	213	4 0	10	2	205	195	6	2	4	25	- 39	1 1	2	7	25	25
6	z	ż	116	176	i	12	s	215	205	6		7	18	22	2 1	2	7	24	31
5	4	?	10	9	?	12	2	25	24	6	10	7	28	26	4 1 5 1	2	7	35	36
5	10	5	101	151	5	12	ŝ	135	130	7	10	7	13	14	ś 1		7	22	24
?	0	?	1 3 9	t 31	0	14	2	147	133		2	?	22	24	1 1	6	7	13	14
4	2	2	195	153	2	14	2	217	203	-	8	÷	12	2	4 1	6	7	24	21
7	8	2	129	1 ?1	4	14	ž	165	156		17	,	15	15	5 1	Б	7	21	23
?	12	2	137	1 30	5	14	7	109	103	1	0		215	249	0	2		253	293
	ž	ź	175	161	ĭ	16	ž	1 35	124	s	ž	8	44	52	i i	÷ .	8	1	5
2	5	2	115	113	3	16	2	161	165	3	0		3.5	41	2	6	8	35	39
2	12	5	23	24	5	16	ź	21	27	;	4	Ř	56	57	2	6	5	45	47
	15	2	109	112	7	16	2	n	79	4	¢	1	556	2 34	0			161	167
9	0	2	145	136	0	15	7	149	139		2	2	23	210	2	5	2	257	259
ġ.		,	111	94	4	18	,	125	117	i,	6		57	53	3		8	21	20
.2	12	2	83	47	5	18	2	91	97	5	5	3	48	45	0 1			26	24
10	6	ź	95	100	3	20	2	1 ZI 67	73	5	ě.	8	13	13	2 1	0	8	40	
17	4	2	29	35	4	20	ş	19	22	5	6	4	7	6	3 1	0	•	33	27
2	;	-	32	30	2	6	3		35	2			213	217	0 1	ż	8	2 37	230
4	6	3	\$7	15	3	8	3	1,	12	5	z	8	41	39	1 1	2	8	12	12
5	2	-	24	71	1	10	3	34	35	5	-	2	179	179	2 13	2	3	175	165
ś	5	÷	19	18	1	10	1	30	28	6	10	ň.	10	9	5 i	ź	8	37	29
5	8	3	24	23	4	10	3	36	31	?	0	2	18	17	0 1			48	46
5	÷.	3	25	70	2	12	3	;	11	÷	ĥ		3	3	2 1	τ.		n	23
5	10	3	23	21	5	12	3	15	15	2	6		43	31	3 1	<u>.</u>	2	10	?
7	10	3	50	20	5	14	3	23	23	÷	10		11	10	5 1		8	28	20
2	12	3	20	25	5	16	3	22	27	7	12	8	5		6 1	2		24	.27
9	ŝ	ì	ŝ	÷		18	3	28	25	â	z		14	13	1 1	6		23	23
9	10	3	20	,3	5	16	3	17	19	5	4		147	1 19	2 1	6	1	140	1 32
1	0	4	54	58	0	ŝ		47	51	9	8		119	125	4 1 0 1	8	-	22	124
3	Ó	4	25	26	á	6	- 6 -	19	19	9	ē	8	22	14	1 1	8		10	6
1	?	4	313	329	1	6	4	3 37	351	?	2	9	6		1		9	44	41 57
4	ō	4	59	63	ā	à	4	49	44	4	2	9	26	23	1		9	23	21
4	ş	*	20	18	1		•	13	12		6	9	27	29	3		9	1	- 1
ŝ	ā		23	24	ź	10		25	26	ŝ	ā	9	2	2	ŝ 1	Ū	9	50	47
5	Ś	4	331	330	1	tü	6	3 9 1	300	5	2	9	25	27	1 1	2	9	19	20
5	5		225	2.2		10		2.82	281	1		19	122	19	0 2	21	.0	117	137
5	4	4	35	32	š	12	4	3	Ť	2	2	10	156	1 84	1	, í		107	127
2	4	4	32	9	4	12	4 5	13	3	1	2	10	123	1 25	1	• 1 • •	0	194	198
,	2	ų,	2 3 4	5 20	1	14	ī,	265	248	3	ŭ	10	126	1 10	2	6 Î	ó	1 17	120
;	4	4	27	29	2	14	4	177	3		0	10	23	25	0	5 1	0	49	52
7	8	4	27	30		i.		17	21	4	í.	12	41	44	ż	8 1	0	30	32
?	17	4	165	171	5	14		1 97	293	4	5	10	1 36	1 27	3 .	51	0	94	
3	ŝ	4	32	19	5 n	18	1	11	19	5	2	10	31	11	i 1	0 1	ō	5.	53
9	z	4	151	142	ĩ	18	ĥ.	1 77	167	5		10	192	95	2 I.	o i	0	125	119
3	10	4	153	159	2	18	2	152	158	5	6	10	65	58	· 1	υ 1 0 1	.u	1 05	107
10		4	15		2	20	ě.	31	12	6	o	10	32	76	9 î	? i	0	17	11
?	2	5	10,	70	1	4	5	62	59	6	ž A	10	94	96	1 1	21	8	90 91	88 94
ż	÷.	5	i	i	2	6	ś	30	29	6		10	30	11	4 î	? i	0	35	36
4	2	5	77	73	1	10	5	18	17	5	10	10	97	97	5 1	ć 1	0	74	73 65
ś	4	ç,	15	31	2	10	5	13	11	÷	2	10	15	79	i i	i i	0	27	23
5		5	16	13	4	10	ş	22	15	,	4	10	75	74	2 1	1	0	125	121
6	4	5	43	40	1	12	5	10	30 10	7	è	10	90	97	5 L	. 1		102	98

Tabelle 2. Beobachtete und berechnete Strukturamplituden für $\mathrm{Ru}_2\mathrm{Si}_3$

Tabelle 2 (Fortsetzung)

H	x	L,	PO	FC	н	к	L	50	FC	н	;	x	L	FO	*C	в	ĸ	L	20	rc.
フ おうちつゆうせい ミンマス ろんみんちちちちちちちちち アンファナ	10かんはっ ごべんりっ ひてんさんんひざんんちりてひひてんちキッ	111111111111111111111111111111111111111	2 6 3 6 5 7 1 0 7 7 6 1 6 1 1 5 7 1 4 0 1 4 5 7 1 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	2# 655690245369873351154560552329#1	5 7 1 7 7 1 1 1 7 8 8 1 7 1 7 1 2 7 8 8 1 7 7 4 0 1 5 0 L 7 7 4 L	111111111111111111111111111111111111111	14 10 10 11 11 11 12 12 12 12 12 12 12 12 12 12	12571699733553815385385532133552133	177592915513613347167169214736293 13347167169214736293	758127913449400055566666122233444		~~~~	生生生生生生生生生生生生生生生生生生生生生生生生生生生生生生生生生生生生生生生	115869574565545367514 66 1585 54895795245211785387588951391	5 8 7 8 5 9 5 7 4 7 6 5 5 4 5 16 5 4 4 5 7 7 7 1 5 7 7 5 8 5 7 7 8 5 7 9 7 8 5 7 7 8 5 7 7 8 5 7 7 8 5 7 7 8 5 7 7 8 5 7 7 8 5 7 7 8 5 7 7 7 7	1710017017301754017500172017	112244666888881111111111	111111111111111111111111111111111111111	为对野大骑药时买西亚西亚研萨时领导时者的骑行用几个时期分组药	422758457183465544155687269516
222とないなくちちちんれったちに用すればいいいいでしょうとうからないいりのというなかれいようでもんもくちちじちちんやアファファアアのうちっとううっと、これのこととなり	そうねエラブスエジベア ほえし ました こうちょう ひょうえん おしまえ しまえ しましん スレック しん ひょうちょう うどう ひょう アンド・シング しゅうゆゆ ほししし しょうしん アイシック ロシン しょう アン・マング しょうしん アン・シング しん ひょうしん アン・シング しん ひょう ひょう ひょうひょう ひょうひょう ひょうひょう アン・シング しん ひょうひょう ひょう ひょうひょう ひょうひょう ひょうひょう ひょうひょう ひょうひょう ひょうひょう ひょうひょう ひょうひょう ひょうしょう ひょうひょう ひょうひょうひょうひょう ひょうひょう ひょうひょうひょう ひょうひょうひょう ひょうひょう ひょうひょう ひょうひょう ひょうひょうひょうひょう ひょうひょうひょうひょうひょうひょうひょうひょうひょうひょうひょうひょうひょうひ		11447101129747247273477465445565445724715557237274472437777347337947472472747327237237471474721214444444444	1.55,1112。 266、1112。	60135501155611551125115115115115565555555555	19555557777779948213156169135515791385791313357911135779127777777991111335555777177799	1111111111111111117277727727727727777777	为后的复数战利的人物间都不能把他不知是自己担任的领的利用扩展计能的所以已没统计部份的规则扩展计划的认为可以进行进行进行通信的关系在专业的方面以及任何为2015年11月间的现在分词分别分别	此有到矿词的外指担孕运输污耗防药药物的切积和排放药物的活剂,经过物间的经过物物中的药物醋酸药的分裂管物中针的没能停歇力组织都收集的过程可以为加加中药方面引的及精化药中研试物的			きちど えまちとえまえまと ようちょうちと ままちちとて ちゅんえんえきまき まちちちちちち ちろう やみゆ しょうちんちん しつちて きりょうとうきょうちょう しゅうしょうちょうちょうちょうちょうちょう しゅうしょうちょうしょう しゅうしょうちょうしょうちょうしょうちょうしょうちょうしょうちょうしょうちょうしょうちょうしょう	おち ままま ちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちち	14757442733543427775377115536744574377432664455047565672774	发现充实外的汉书为码用目标计划空路或建设进行方式不安外的目标等款的修整部队和目前不够推荐处理和技巧的推荐化工程。 1915年初期,如此书书的书目前计划空路或建设建设空方才不安外的目标等款的修整部队和目前不够推荐处理和优化计型化器等物与体的价值才可发化空的性产后空就到目前的外针计位空格式目的可能		91111315155713535757981357981357981357951113555777799911111113131315155577579491010475617575		10227841974553868733597218437354755557897895653397355534869498522254652377485337448537449543932575435643925225	195733738代以765为在2219731233719起9场城城城和44分为为699774432326月999272元213359411入966114972348564855293552333338

Tabelle 2 (Fortsetzung)

Η κ,γγγγγγγγη η η η η η η η η η η η η η η η
、 1 1 1 5 5 7 9 1 5 7 9 1 5 9 1 1 5 5 5 7 7 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 \$666666666666666666666666666666666666
2 347764767878566536578479372737686374337431730574395366376464546456456457725465772546444474202015515685641433583722244941712
2 11735741714515105145757437777751743771737373735355727754557755577264755204535520453551111111111111111
א - 234461234501201122233444666666666666666666677402244262773544556666667777777777777456120110111146335642364135542344556
K 5555577777799917155577777999171557917579175791757917579175791757917579115579175791155777999111135577791111111111
1. ,,又又又又又又又又又又又是我也也也也也也也也也也也也也也也也也也也也也也也也也
20 57442556591224471303455544555739625444455457177445577445523453324119745127442515739410422655795454274425612511571542701713943972197115442774
PC
お アクタスキレルちちちちんちちアアアアカススリネングはすんちんちしネクタスキュレルルムちちちちちちちちたアアアアアメカオ きひえひしとさせしてん りしとさんちりょう ちゅうしょう さんりょうちょう
Χ 1*456151701579357935791579113575221313517571757911357913555557777999991111111111
11881122122222222222222222222222222222
20 345433,453757,3194092751,1,773,2467306557,809443945,336,1559146733779574657337746514057407675179868558,39545444444467315
122、防持扩充22355667716排码轮码有效组码推移交打扩持均处2365514365531。1。1。1。1。1、1、1、1、1、1、1、1、1、1、1、1、1、1、1
11、 ゆいちちちちちアアアできちっとすんなみもちんんんちちのはなったっしつでんなできるログロロネズキみなちちんとんまさってきするみみみなちちなひしのまでのまとすなまでもないますのよ
K 34757901357791135113570133579133557799991111131 K 347579013557791113135701335577913355779999111113350246134171541213413513513571351335557777999111113543511355
111111111111111111111111111111111111111
P 714541951737065714917676744757917176712126911271462940075527327527514486456645664549446565756467867862276625 P 7145541937306571493367564417544459055377746294007737956756236873036449914609585029971583475844590553774662940
FC % 4 461441665517677214 41 11 12 11 11 11 11 11 10 07724555514480994334679477234555598648895565565656556565698883312958052255 FC % 4 4614416655176772144011400871807345551914958131000722513586888994334659417531493135584889968351269884873275

Abb. 1. Projektion der asymmetrischen Einheit der Elementarzelle von Ru₂Si₃ und Ru₂Ge₃ auf (001) im Vergleich mit Ru₂Sn₃

Tabelle 3. I	nteratomare	Abstände	<i>für</i> Ru	$_{12}Si_3$ ($\left \right $	3,2 Å	Ĺ)
----------------	-------------	----------	---------------	---------------	------------------	-------	----

Ru (1) -	— Ru (1)	3,071	2 imes	Ru (2) -	– Ru (2)	2,864	2 imes
	Ru (3)	2,989	2 imes		Ru (3)	3.017	2 imes
	Si(2)	2.366	2 imes		Si (1)	2.377	$2 \times$
	Si (3)	2.451	2 imes		Si(1)	2,739	$\frac{1}{2}$
	Si (3)	2.317	2 imes		Si(2)	2,391	$\frac{1}{2}$
	()	,,	- / (Si(2)	2 617	$\overline{2}$
Ru (3) -	— Ru (1)	2,989			Nr (-)	2,011	-
• /	$\mathbf{Ru}(2)$	3,017		Si (1) -	$-\operatorname{Ru}(2)$	2.377	
	$\operatorname{Ru}(3)$	2,984	2 imes	()	$\mathbf{Ru}(2)$	2.739	
	Si (1)	2,352			$\operatorname{Ru}(3)$	2.352	
	Si(1)	2,500			$\operatorname{Ru}(3)$	2.500	
	Si (1)	2,516			$\operatorname{Ru}(3)$	2.516	
	Si(2)	2.489			Si(1)	2,988	$2 \times$
	$\dot{Si}(2)$	2.503			$\operatorname{Si}(2)$	2,645	- ^
	Si (3)	2,406			$\operatorname{Si}(2)$	2,816	
	~					,	
	Si(3)	2,442			Si (2)	3,097	
	Si(3)	3,092			Si (3)	2,724	
					Si (3)	2,796	
Si (2) -	$- \operatorname{Ru}(1)$	2,366			Si (3)	3,191	
	Ru (2)	2,391					
	$\operatorname{Ru}(2)$	2,617		Si (3) –	– Ru (1)	2,317	
	Ru (3)	2,489			Ru (1)	2,451	
	Ru (3)	2,503			$\operatorname{Ru}(3)$	2,406	
	Si (1)	2,645			Ru (3)	2,442	
	Si (1)	2,816			Ru (3)	3,092	
	Si (1)	3,097			Si (1)	2,724	
	Si (2)	2,708			Si (1)	2,796	
	Si (3)	2,934			Si(1)	3,191	
	Si (3)	3,055			Si(2)	2,934	
					Si (2)	3.055	

Standardabweichungen (in Å) der Abstände:

 $\begin{array}{c} {\rm Ru-Ru} \ldots \pm 0,001 \\ {\rm Ru-Si} \ldots \pm 0,003 \\ {\rm Si} - {\rm Si} \ldots \pm 0,004 \end{array}$

Diskussion

Die Kristallstruktur von Ru₂Si₃ gehört wie die des isotypen Germanids, Ru₂Ge₃, einer Gruppe von Verbindungen der allgemeinen Formel TB_{2-x}^* an, die sich vom TiSi₂-Typ ableiten läßt^{8, 9}. Große Ähnlichkeit besteht insbesondere zu dem tetragonalen Stannid Ru₂Sn₃¹⁰ dieser Gruppe. In Abb. 1 sind einander entsprechende Ausschnitte der Strukturen von Ru₂Si₃, Ru₂Ge₃ und Ru₂Sn₃ gegenübergestellt, die eine sukzessive Änderung der freien Parameter in Abhängigkeit vom B-Gruppen-Element erkennen lassen. Bezüglich der Koordinationszahlen stimmen Ru₂Si₃ und Ru₂Ge₃ weitgehend überein (Tab. 3). Allen drei Strukturen gemeinsam ist eine deutliche Verkürzung des mittleren Abstandes Ru-B-Metall gegenüber der Summe der Metallradien; so betragen die Mittelwerte dieser Abstände für Ru₂Si₃, Ru₂Ge₃ und Ru₂Sn₃: 2,46, 2.54 bzw. 2.69 Å gegenüber den aus den Radien für K.Z. [8] berechneten¹¹: 2,61, 2,67 bzw. 2,85 Å mit einer Verkürzung von 0,15, 0,13 bzw. 0.16 Å. Die Abstände zwischen den Ru-Atomen liegen hingegen klar über der Radiensumme, und auch die Mittelwerte der Abstände zwischen den B-Metallen liegen mit Differenzen von 0,16, 0,20 bzw. 0,18 Å noch eindeutig über den Summen der Metallradien für K. Z. [8].

Herrn Prof. Dr. A. Wittmann[†] sind wir für die Anregung und Förderung dieser Arbeit zu Dank verpflichtet.

Herrn Dr. W. Petter vom Institut für Kristallographie und Petrographie der ETH Zürich danken wir für die Unterstützung bei den Messungen mit dem Einkristalldiffraktometer.

Für die finanzielle Unterstützung bei der Anschaffung von Geräten danken wir der Oesterreichischen Nationalbank.

Die Rechenarbeiten wurden an den Rechenzentren der ETH Zürich und der Technischen Hochschule Wien durchgeführt.

Literatur

- ¹ H. J. Wallbaum, Naturwissensch. 32, 76 (1944).
- ² J. H. Buddery und A. J. E. Welch, Nature [London] 167, 362 (1951).
- ³ L. N. Finnie, J. Less-common Metals 4, 24 (1962).
- ⁴ O. Schwomma, H. Nowotny und A. Wittmann, Mh. Chem. 94, 681 (1963).
- ⁵ H. Völlenkle, Mh. Chem. 105, 1217 (1974).
- ⁶ International Tables for X-ray Crystallography, Vol. 3. Birmingham: The Kynoch Press. 1962.
- ⁷ E. W. Hughes, J. Amer. Chem. Soc. 63, 1737 (1941).

* T =Übergangsmetall, B =Al, Ga, Si, Ge, Sn, As.

- ⁸ H. Völlenkle, A. Wittmann und H. Nowotny, Mh. Chem. 97, 506 (1966).
- ⁹ H. Völlenkle, A. Preisinger, H. Nowotny und A. Wittmann, Z. Kristallogr. 124, 9 (1967).
- ¹⁰ O. Schwomma, H. Nowotny und A. Wittmann, Mh. Chem. 95, 1538 (1964).
- ¹¹ L. Pauling, Die Natur der chemischen Bindung. Weinheim: Verlag Chemie. 1968.

Dr. H. Völlenkle Institut für Mineralogie, Kristallographie und Strukturchemie Technische Hochschule Wien Getreidemarkt 9 A-1060 Wien Österreich